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Abstract
This is a reply to the comment by J H Hannay.

PACS numbers: 03.65.Vf, 84.30.Bv

In reply to the comment [1] on [2], we first show that the effective Hamiltonian
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leads to the differential equation for an LCR circuit with time-dependent inductance L(t),
capacitance C(t) and resistance R(t) in series. With the help of canonical equations given by
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it is straightforward to prove that
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which is just the differential equation for a time-dependent LCR circuit [2]. It should be noted
that P in Hamiltonian (1) should be regarded as the canonical momentum which is conjugate
to Q, and the definition P = L dQ

dt
is not canonical momentum [1].

Secondly, we show that the transformation

q = Q exp
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is canonical. In fact, such a transformation is given by the generating function

G(Q,p, t) = exp

(∫ t

0

R

2L
dt

)
Qp. (5)

It is easy to check that P = ∂G/∂Q = exp
(∫ t

0
R
2L

dt
)
p, q = ∂G/∂p = exp

(∫ t

0
R
2L

dt
)
Q. The

new Hamiltonian turns out to be

H ′ = H + ∂G/∂t = 1

2

[
p2
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+

R(t)
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pq +

q2

C(t)

]
. (6)

One can observe that the signs of the two exponents in equation (4) are opposite. It should
be noted that the foregoing discussion is similar to the treatment of damped harmonic
oscillator [3].

Finally, we point out that [1] actually gives another derivation of the result obtained in [2].
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